Finite Fields EXAM 25/01/2006

1. For any finite field K and a finite extension F of K, there exists a normal basis of F over K.
2. Let $f \in \mathbb{F}_{q}[x]$ be the polynomial of positive degree with $f(0) \neq 0$. Let r be the least positive integer for which x^{r} is congruent $\bmod f(x)$ to some element of \mathbb{F}_{q}, so that $x^{r} \equiv a \bmod f(x)$ with a uniquely determined $a \in \mathbb{F}_{q}^{*}$. Then $\operatorname{ord}(f)=h r$, where h is the order of a in the multiplicative group \mathbb{F}_{q}^{*}.
3. The monic polynomial is a q-polynomial over \mathbb{F}_{q} if and only if each root of $L(x)$ has the same multiplicity, which is either 1 or a power of a q, and the root form a q-modulus (Prove both sides exactly).
4. Compute the minimal polynomials over \mathbb{F}_{3} of all elements of \mathbb{F}_{9}.
5. Describe exactly the method of finding the roots of an affine q-polynomial $A(x) \in \mathbb{F}_{q}[x]$ over $\mathbb{F}_{q^{m}}$. Also describe the algorithm of finding the roots of an arbitrary polynomial $f(x) \in \mathbb{F}_{q}[x]$ over $\mathbb{F}_{q^{m}}$ using the notion of the affine multiple.
6. Determine the standard generator and the standard parity-check matrix of the binary linear [5,3]-code C defined by the generator matrix G. Find all codewords, the minimum distance and the weight enumerator of C. Also verify the MacWilliams Identity for C

$$
G=\left[\begin{array}{lllll}
0 & 1 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 & 1 \\
1 & 0 & 0 & 1 & 1
\end{array}\right]
$$

In the name of God

Finite Fields

(Final Exam, June, 9, 2005)

1. Let $F=\mathbb{F}_{q^{m}}$ and $K=\mathbb{F}_{q}$. Consider both F and K as vector spaces over K.
(a) Show that $\operatorname{Tr}_{F / K}: F \longrightarrow K$ is a surjective linear transformation.
(b) If $\beta \in F$ and $L_{\beta}: F \longrightarrow K$ is defined by $L_{\beta}(\alpha)=\operatorname{Tr}_{F / K}(\beta \alpha)$, show that $\operatorname{Hom}_{K}(F, K)=\left\{L_{\beta} \mid \beta \in F\right\}$, where $\operatorname{Hom}_{K}(F, K)$ is the set of linear transformation from F to K. Furthermore $L_{\beta} \neq L_{\gamma}$ whenever $\beta \neq \gamma$.
2. A polynomial $f(x) \in \mathbb{F}_{q}[x]$ of degree m is a primitive polynomial over \mathbb{F}_{q} if and only if f is monic, $f(0) \neq 0$, and $\operatorname{ord}(f)=q^{m}-1$.
3. Let $f(x)$ be an irreducible polynomial in $\mathbb{F}_{q}[x]$ and let $F(x)$ be its linearized q-associate. Then the degree of every irreducible factor of $F(x) / x$ in $\mathbb{F}_{q}[x]$ is equal to $\operatorname{ord}(f)$.
4. (a) If $f(x) \in \mathbb{F}_{q}[x]$ is monic and $h(x) \in \mathbb{F}_{q}[x]$ is such that $h^{q} \equiv$ $h \bmod f$, then

$$
f(x)=\prod_{c \in \mathbb{F}_{q}} \operatorname{gcd}(f(x), h(x)-c)
$$

(b) Show that in view of the above equation and when q is small, we can find the canonical factorization of $f(x)$. Describe the Berlekamp factorization algorithm.
(c) What can we do when q is large? Explain
5. Describe the following concepts: periodic sequence, ultimately periodic sequence, impulse response sequence, characteristic and minimal polynomial of a sequence, generating functions, (n, k)-linear code, parity check matrix, cyclic code.
6. Let $\theta \in \mathbb{F}_{64}$ be a root of the irreducible polynomial $x^{6}+x+1 \in \mathbb{F}_{2}[x]$. Find the minimal polynomial of $\beta=1+\theta^{2}+\theta^{3}$ over \mathbb{F}_{2}.

