In the name of God

Finite Fields EXAM 25/01/2006

- 1. For any finite field K and a finite extension F of K, there exists a normal basis of F over K.
- 2. Let $f \in \mathbb{F}_q[x]$ be the polynomial of positive degree with $f(0) \neq 0$. Let r be the least positive integer for which x^r is congruent mod f(x) to some element of \mathbb{F}_q , so that $x^r \equiv a \mod f(x)$ with a uniquely determined $a \in \mathbb{F}_q^*$. Then $\operatorname{ord}(f) = hr$, where h is the order of a in the multiplicative group \mathbb{F}_q^* .
- 3. The monic polynomial is a q-polynomial over \mathbb{F}_q if and only if each root of L(x) has the same multiplicity, which is either 1 or a power of a q, and the root form a q-modulus (Prove both sides exactly).
- 4. Compute the minimal polynomials over \mathbb{F}_3 of all elements of \mathbb{F}_9 .
- 5. Describe exactly the method of finding the roots of an affine q-polynomial $A(x) \in \mathbb{F}_q[x]$ over \mathbb{F}_{q^m} . Also describe the algorithm of finding the roots of an arbitrary polynomial $f(x) \in \mathbb{F}_q[x]$ over \mathbb{F}_{q^m} using the notion of the affine multiple.
- 6. Determine the standard generator and the standard parity-check matrix of the binary linear [5,3]-code C defined by the generator matrix G. Find all codewords, the minimum distance and the weight enumerator of C. Also verify the MacWilliams Identity for C

$$G = \begin{bmatrix} 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1 & 1 \end{bmatrix}.$$

Finite Fields

(Final Exam, June, 9, 2005)

1. Let $F = \mathbb{F}_{q^m}$ and $K = \mathbb{F}_q$. Consider both F and K as vector spaces over K.

(a) Show that $\operatorname{Tr}_{F/K} : F \longrightarrow K$ is a surjective linear transformation.

(b) If $\beta \in F$ and $L_{\beta} : F \longrightarrow K$ is defined by $L_{\beta}(\alpha) = \operatorname{Tr}_{F/K}(\beta\alpha)$, show that $\operatorname{Hom}_{K}(F, K) = \{L_{\beta} \mid \beta \in F\}$, where $\operatorname{Hom}_{K}(F, K)$ is the set of linear transformation from F to K. Furthermore $L_{\beta} \neq L_{\gamma}$ whenever $\beta \neq \gamma$.

- 2. A polynomial $f(x) \in \mathbb{F}_q[x]$ of degree m is a primitive polynomial over \mathbb{F}_q if and only if f is monic, $f(0) \neq 0$, and $\operatorname{ord}(f) = q^m 1$.
- 3. Let f(x) be an irreducible polynomial in $\mathbb{F}_q[x]$ and let F(x) be its linearized q-associate. Then the degree of every irreducible factor of F(x)/x in $\mathbb{F}_q[x]$ is equal to $\operatorname{ord}(f)$.
- 4. (a) If $f(x) \in \mathbb{F}_q[x]$ is monic and $h(x) \in \mathbb{F}_q[x]$ is such that $h^q \equiv h \mod f$, then

$$f(x) = \prod_{c \in \mathbb{F}_q} \gcd(f(x), h(x) - c).$$

(b) Show that in view of the above equation and when q is small, we can find the canonical factorization of f(x). Describe the Berlekamp factorization algorithm.

(c) What can we do when q is large? Explain

- 5. Describe the following concepts: periodic sequence, ultimately periodic sequence, impulse response sequence, characteristic and minimal polynomial of a sequence, generating functions, (n, k)-linear code, parity check matrix, cyclic code.
- 6. Let $\theta \in \mathbb{F}_{64}$ be a root of the irreducible polynomial $x^6 + x + 1 \in \mathbb{F}_2[x]$. Find the minimal polynomial of $\beta = 1 + \theta^2 + \theta^3$ over \mathbb{F}_2 .