Group Theory (November, 27, 2006)

- 1. (a) Show by an example that the product of two subnormal subgroup of a group need not be a subgroup.
 - (b) If H sn G and $K \leq G$ then HK sn G.
- 2. Suppose that G is nilpotent. Then for any central series of G, say

 $1 = G_0 \trianglelefteq G_1 \trianglelefteq \cdots \trianglelefteq G_r = G,$

 $\Gamma_{r-i+1}(G) \leq G_i \leq Z_i(G)$ for each $i = 0, 1, \dots, r$.

Furthermore, the least integer c such that $\Gamma_{c+1}(G) = 1$ is equal to the least integer c such that $Z_c(G) = G$.

- 3. Let p and q be primes such that p > q. If $p \not\equiv 1 \mod q$ the v(pq) = 1, while if $p \equiv 1 \mod q$ the v(pq) = 2.
- 4. (a) What is the wreath product of two groups? Describe its fundamental properties.

(b) Let G be any soluble group, say of derived length n. Then $G \wr C_2$ is soluble of derived length n + 1, where \wr denotes the natural wreath product.

- 5. Let G be a finite group.
 - (a) If $K \leq G$ then $Fitt(K) \leq Fitt(G)$.

(b) Show by an example that Fitt(G) need not contain Fitt(H) for every subgroup H of G.

Group Theory (December, 02, 2013)

1. Let G be a group and X be a set. Show that there exists a homomorphism $G \longrightarrow \text{Sym}(X)$ if and only if there exists a function

$$\begin{array}{c} X \times G \longrightarrow X \\ (x,g) \mapsto xg \end{array}$$

such that x1 = x and x(gh) = (xg)h, for all $x \in X$ and $g, h \in G$.

- 2. Show that if G is a finite group of order p^2q^2 , where p and q are prime numbers, then G is not simple.
- 3. Let H be a normal subgroup of a finite group G, such that (|H|, |G:H|) = 1. Prove that H has a complement in G.
- 4. Let G be a finite primitive permutation group on a set X and $1 \neq N \trianglelefteq G$. Then N acts transitively on X. Moreover if N is regular on X, then N is a minimal normal subgroup of G.
- 5. Suppose that G is a Frobenius group on a set X with kernel K. Show that
 (a) K = {g ∈ G | Fix(g) = ∅} ∪ {1}, where Fix(g) = {x ∈ X | xg = x}.
 (b) For all 1 ≠ u ∈ K, C_G(u) ⊆ K; and for all 1 ≠ g ∈ G_x, C_G(g) ⊆ G_x.
 - (c) Z(G) = 1
- 6. (Ph. D. students) A regular permutation group of finite degree is primitive if and only if it has prime order.
- 7. (Ph. D. students) Show that every non-abelian group of order 8 is isomorphic to D_8 or Q_8 .

Group Theory (November, 16, 2013)

- 1. Let $G = \langle g \rangle$ be a cyclic group and $H \leq G$. Prove that H is cyclic.
- 2. State and prove the Lagrange Theorem.
- 3. Let H₁ < H₂ < · · · be a chain of subgroups of a group G and H = ∪_{n=1}[∞] H_n. Show that
 (a) H is a subgroup of G.
 (b) H is not finitely generated.
 (c) if H_n, n = 1, 2, ..., is a simple group, then H is a simple group.
- 4. (for Ph. D. students) Let N be a normal subgroup of a finite group G such that (|N|, |G/N|) = 1. Show that N is a charactristic subgroup of G.
- 5. (for Ph. D. students) Show that \mathbb{Q} has no maximal subgroup.

Group Theory (January, 08, 2013)

- 1. Let G be a finite group of order 2m, where m > 1 is odd. Then G has an normal subgroup of order m.
- 2. Show that every group of order p^2q^2 , where p and q are primes, is not simple.

Group Theory (January, 08, 2013)

Every question has 15 scores

- 1. Give the exact definition of the following concepts: Free group, Free abelian group, Wreath product, Holomorph, Solvable group,
- 2. Let $G \neq 1$ be a finite group. If G is characteristically simple, then G is a direct product of isomorphic simple groups.
- 3. Let H be a subgroup of an abelian group G. If G/H is free abelian, then there exists a subgroup K of G such that $G = H \oplus K$.
- 4. Let G be a finitely generated abelian group. If G is torsuion free, then G is a free abelian group with finite rank.
- 5. Let H be a minimal normal subgroup of a solvable group G. Then either H is an elementary abelian p group, for some prime p or is a direct product of copies of \mathbb{Q} , the additive group of rational numbers.
- 6. If G is a nilpotent group then every subgroup of G is a subnormal subgroup. Show that if G is finite, then the converse is also true.
- 7. Let M and M be normal nilpotent subgroup of a group. Then MN is normal and nilpotent.

Group Theory (November, 18, 2012)

1. Let p be a prime. If H is a p-subgroup of a finite group G, then

$$|G:H| \equiv |N_G(H):H| \pmod{p}.$$

Moreover if $p \mid |G : H|$, then $H < N_G(H)$.

- 2. If G is a finite simple group of order 60, then $G \cong A_5$.
- 3. Let H be an abelian normal subgroup of a finite group G such that (|H|, |G:H|) = 1. Then H has a complement in G.
- 4. Let G be a primitive permutation group on a set X and $1 \neq N \trianglelefteq G$. Then N is transitive on X. Moreover If N is regular on X, then N is a minimal normal subgroup of G.
- 5. Let G be a finite Frobenius group with Frobenius kernel K and Frobenius complement H. Show that |K| = |G : H| and $|G : H| \equiv 1 \pmod{|H|}$
- 6. Let G be a finite group of order 2p, where p is a prime. Prove that either $G \cong \mathbb{Z}_{2p}$ or $G \cong D_{2p}$.
- 7. (Ph. D. students) Let G be a Frobenius group on a set X with Frobenius kernel K. Show that for all $1 \neq u \in K$, $C_G(u) \subseteq K$ and for all $1 \neq g \in K$, $C_G(g) \subseteq G_x$.

Group Theory (June, 20, 2012)

Answer to six questions only

- 1. Let $G = \langle g_1, \ldots, g_n \rangle$ be a finitely generated abelian torsion free group. Show that is free abelian of finite rank.
- 2. Prove that in a polycyclic group G the number of infinite factors in a cyclic series is independent of the series and hence is an invariant of G.
- 3. Let G be a finite group. Then G is nilpotent if and only if $G' \leq \Phi(G)$.
- 4. Let G be a supersolvable group. Prove that F(G) is nilpotent and G/F(G) is a finite abelian group.
- 5. Show that the additive group of rational number $\mathbb Q$ is not free abelian.
- 6. Prove that a finite group G is nilpotent if and only if elements of co-prime order commute.
- 7. Let G be a group. Let H be a proper subgroup and A be a normal abelian subgroup of G, such that G = HA. Show that H is a maximal subgroup of G if and only if $A/H \cap A$ is a minimal normal subgroup of $G/H \cap A$.

Group Theory (April, 30, 2012)

Answer to six questions only

- 1. Let G be a finite group of order 2m, where m > 1 is odd. Then G has an normal subgroup of order m.
- 2. Let G be a group of order 385. Then the Sylow 7-subgroup of G is contained in the center of G and the Sylow 11-subgroup of G is normal.
- 3. Let H be an abelian normal subgroup of a finite group G such that (|H|, |G : H|) = 1. Then H has a complement in G and all complements are conjugate.
- 4. Let G be a transitive permutation group on a set X and let $x \in X$. Then G is primitive if and only if G_x is a maximal subgroup of G.
- 5. Let $G = G_1 \times \cdots \times G_n$, where G_i is non-abelian simple. Then G_1, \ldots, G_n are the only minimal normal subgroups of G; and every normal subgroup is a direct product of some G_i .
- 6. Let H be a group acting on a set X, and let G be any group. Describe the (restricted and unrestricted) wreath product of G by H.
- 7. Let G be a finite Frobenius group on X with kernel K and complement H. Prove, **in details**, that

$$|X| = |K| = |G:H| \equiv 1 \pmod{|H|},$$

in particular G = KH.

Group Theory (July, 01, 2011)

- 1. Let G be a transitive permutation group on a set X and let $x \in X$. Then G is primitive if and only if G_x is a maximal subgroup of G.
- 2. (a) If G is a primitive permutation group on a set X, then either G has prime order or, for each pair of distinct elements x and y in X, G = ⟨G_x, G_y⟩.
 (b) Let G be a primitive permutation group on a set X. If G

(b) Let G be a primitive permutation group on a set X. If G_z , is an abelian group for some $z \in X$, then $G_x \cap G_y = 1$, for all $x, y \in X$.

- 3. Suppose that $G = Dr_{i=1}^{n}G_{i}$, where, for each $i = 1, ..., n, G_{i}$ is a simple non-abelian normal subgroup of G. Then $G_{1}, ..., G_{n}$ are the only minimal normal subgroups of G and every non-trivial normal subgroup of G is a direct product of some of $G_{1}, ..., G_{n}$.
- 4. Show that
 - (a) $Hol(C_2 \times C_2) \cong S_4$. (b) $C_2 \wr C_2 \cong D_8$.
- 5. An abelian group G is divisible if and only if it is a direct sum of isomorphic copies of \mathbb{Q} and of quasicyclic groups.
- 6. Let G be a soluble group. A minimal normal subgroup of G is either an elementary abelian p-group or else a direct product of copies of the additive group of rational numbers.
- 7. Let G be a finite group. Then G is nilpotent if and only if every subgroup is subnormal.
- 8. If the center of a group G is torsion-free, each upper central factor is torsion-free.

Group Theory (January, 07, 2009)

- 1. Let G be a cyclic p-group of order $p^e > 1$ and $A := \operatorname{Aut}(G)$. Then $A = S \times T$, where S is a group of order $p^e - 1$ and T is a cyclic group of order p - 1.
- 2. Let K be an abelain normal subgroup of a finite group G such that (|K|, |G : K|) = 1. Then K has a complement in G, and all complements of K are conjugate in G.
- 3. Let G be a Frobenius group, with Frobenius complement H. If |H| is even, then the Frobenius kernel is a normal subgroup.
- 4. (I) Let H be a subgroup of a group G. Prove that N_G(H)/C_G(H) is isomorphic to a subgroup of Aut(H).
 (II) Let G be nilpotent and N a maximal Abelian normal subgroup of G. Prove that

 (a) C_G(N) = N.
 (b) If N is cyclic, then G' is cyclic.
- 5. Let G be a finite group, $C := C_G(F(G))$. Then

$$O_p(C/C \cap F(G)) = 1,$$

for every prime p

6. Let G be a π -separable finite group and $O_{\pi'}(G) = 1$. Then

 $C_G(O_\pi(G)) \le O_\pi(G).$

Group Theory (December, 11, 2009)

Let G = G₁ × ··· × G_n and N be a normal subgroup of G.
 (a) If N is perfect, then N = (N ∩ G₁) × ··· × (N ∩ G_n).
 (b) If G₁,..., G_n are non-abelina simple groups, then there exists a subset J := {j₁,..., j_m} ⊆ {1,..., n} such that

$$N = G_{j_1} \times \cdots \times G_{j_m}$$
 and $G_k \cap N = 1$ for $k \notin J$.

2. Let \mathcal{M} be a finite set of minimal normal subgroup of G, and let $M = \prod_{N \in \mathcal{M}} N$. Let U be a normal subgroup of G. Then there exist $N_1, \ldots, N_k \in \mathcal{M}$ such that

$$UM = U \times N_1 \times \cdots \times N_k.$$

- 3. Let G be a finite abelian group and U a cyclic subgroup of maximal order n G. Then there exists a complement V of U in G.
- 4. The automorphism of a group order p, a prime, is cyclic.
- 5. Let P be a p-subgroup of G and p be a divisor of |G:P|. Then $P < N_G(P)$.
- 6. Let G be not 3-closed and |G| = 12. Then G is 2-closed.

Group Theory (January, 20, 2007)

- 1. Let H act on K, say with action φ , and let $J = \text{Im } \varphi \leq \text{Aut } K$. If the action is faithful then the group $H \ltimes_{\varphi} K$ is isomorphic to the relative holomorph JK of K.
- 2. Let G be a finite group such that all Sylow subgroup of G are cyclic. Then G is Soluble. Moreover, G/G' and G' are both cyclic, G splits over G', and G' is a Hall subgroup of G.
- 3. Let G be a finite group and P a Sylow p-subgroup of G. Then G is pnilpotent if and only if $N_G(Q)/C_G(Q)$ is a p-subgroup for every subgroup Q of P.
- 4. Let G be a finite group. Then G is p-nilpotent if and only if every chief factor of G of order divisible by p is central. Conclude that G is nilpotent if and inly if G is p-nilpotent for every prime p.
- 5. State and prove the Burnside's basis theorem.
- 6. Suppose that A is an abelian minimal normal subgroup of a finite group G. Then either $A \leq \Phi(G)$ or G splits over A.