In the name of God

Group Theory

(November, 27, 2006)

1. (a) Show by an example that the product of two subnormal subgroup of a group need not be a subgroup.
(b) If H sn G and $K \unlhd G$ then $H K$ sn G.
2. Suppose that G is nilpotent. Then for any central series of G, say

$$
\begin{gathered}
1=G_{0} \unlhd G_{1} \unlhd \cdots \unlhd G_{r}=G, \\
\Gamma_{r-i+1}(G) \leq G_{i} \leq Z_{i}(G) \text { for each } i=0,1, \ldots, r .
\end{gathered}
$$

Furthermore, the least integer c such that $\Gamma_{c+1}(G)=1$ is equal to the least integer c such that $Z_{c}(G)=G$.
3. Let p and q be primes such that $p>q$. If $p \not \equiv 1 \bmod q$ the $v(p q)=1$, while if $p \equiv 1 \bmod q$ the $v(p q)=2$.
4. (a) What is the wreath product of two groups? Describe its fundamental properties.
(b) Let G be any soluble group, say of derived length n. Then $G \imath C_{2}$ is soluble of derived length $n+1$, where ζ denotes the natural wreath product.
5. Let G be a finite group.
(a) If $K \unlhd G$ then $\operatorname{Fitt}(K) \leq \operatorname{Fitt}(G)$.
(b) Show by an example that $\operatorname{Fitt}(G)$ need not contain $\operatorname{Fitt}(H)$ for every subgroup H of G.

Group Theory

(December, 02, 2013)

1. Let G be a group and X be a set. Show that there exists a homomorphism $G \longrightarrow \operatorname{Sym}(X)$ if and only if there exists a function

$$
\begin{aligned}
& X \times G \longrightarrow X \\
& (x, g) \mapsto x g
\end{aligned}
$$

such that $x 1=x$ and $x(g h)=(x g) h$, for all $x \in X$ and $g, h \in G$.
2. Show that if G is a finite group of order $p^{2} q^{2}$, where p and q are prime numbers, then G is not simple.
3. Let H be a normal subgroup of a finite group G, such that $(|H|,|G: H|)=1$. Prove that H has a complement in G.
4. Let G be a finite primitive permutation group on a set X and $1 \neq N \unlhd G$. Then N acts transitively on X. Moreover if N is regular on X, then N is a minimal normal subgroup of G.
5. Suppose that G is a Frobenius group on a set X with kernel K. Show that
(a) $K=\{g \in G \mid \operatorname{Fix}(g)=\emptyset\} \cup\{1\}$, where $\operatorname{Fix}(g)=\{x \in X \mid$ $x g=x\}$.
(b) For all $1 \neq u \in K, C_{G}(u) \subseteq K$; and for all $1 \neq g \in G_{x}$, $C_{G}(g) \subseteq G_{x}$.
(c) $Z(G)=1$
6. (Ph. D. students) A regular permutation group of finite degree is primitive if and only if it has prime order.
7. (Ph. D. students) Show that every non-abelian group of order 8 is isomorphic to D_{8} or Q_{8}.

Group Theory

(November, 16, 2013)

1. Let $G=\langle g\rangle$ be a cyclic group and $H \leq G$. Prove that H is cyclic.
2. State and prove the Lagrange Theorem.
3. Let $H_{1}<H_{2}<\cdots$ be a chain of subgroups of a group G and $H=\bigcup_{n=1}^{\infty} H_{n}$. Show that
(a) H is a subgroup of G.
(b) H is not finitely generated.
(c) if $H_{n}, n=1,2, \ldots$, is a simple group, then H is a simple group.
4. (for Ph. D. students) Let N be a normal subgroup of a finite group G such that $(|N|,|G / N|)=1$. Show that N is a charactristic subgroup of G.
5. (for Ph. D. students) Show that \mathbb{Q} has no maximal subgroup.

In the name of God
Group Theory
(January, 08, 2013)

1. Let G be a finite group of order $2 m$, where $m>1$ is odd. Then G has an normal subgroup of order m.
2. Show that every group of order $p^{2} q^{2}$, where p and q are primes, is not simple.

Every question has 15 scores

1. Give the exact definition of the following concepts: Free group, Free abelian group, Wreath product, Holomorph, Solvable group,
2. Let $G \neq 1$ be a finite group. If G is characteristically simple, then G is a direct product of isomorphic simple groups.
3. Let H be a subgroup of an abelian group G. If G / H is free abelian, then there exists a subgroup K of G such that $G=$ $H \oplus K$.
4. Let G be a finitely generated abelian group. If G is torsuion free, then G is a free abelian group with finite rank.
5. Let H be a minimal normal subgroup of a solvable group G. Then either H is an elementary abelian p group, for some prime p or is a direct product of copies of \mathbb{Q}, the additive group of rational numbers.
6. If G is a nilpotent group then every subgroup of G is a subnormal subgroup. Show that if G is finite, then the converse is also true.
7. Let M and M be normal nilpotent subgroup of a group. Then $M N$ is normal and nilpotent.

Group Theory

(November, 18, 2012)

1. Let p be a prime. If H is a p-subgroup of a finite group G, then

$$
|G: H| \equiv\left|N_{G}(H): H\right| \quad(\bmod p) .
$$

Moreover if $p\left||G: H|\right.$, then $H<N_{G}(H)$.
2. If G is a finite simple group of order 60 , then $G \cong A_{5}$.
3. Let H be an abelian normal subgroup of a finite group G such that $(|H|,|G: H|)=1$. Then H has a complement in G.
4. Let G be a primitive permutation group on a set X and $1 \neq$ $N \unlhd G$. Then N is transitive on X. Moreover If N is regular on X, then N is a minimal normal subgroup of G.
5. Let G be a finite Frobenius group with Frobenius kernel K and Frobenius complement H. Show that $|K|=|G: H|$ and $\mid G$: $H \mid \equiv 1 \quad(\bmod |H|)$
6. Let G be a finite group of order $2 p$, where p is a prime. Prove that either $G \cong \mathbb{Z}_{2 p}$ or $G \cong D_{2 p}$.
7. (Ph. D. students) Let G be a Frobenius group on a set X with Frobenius kernel K. Show that for all $1 \neq u \in K, C_{G}(u) \subseteq K$ and for all $1 \neq g \in K, C_{G}(g) \subseteq G_{x}$.

> Group Theory
> (June, 20, 2012)

Answer to six questions only

1. Let $G=\left\langle g_{1}, \ldots, g_{n}\right\rangle$ be a finitely generated abelian torsion free group. Show that is free abelian of finite rank.
2. Prove that in a polycyclic group G the number of infinite factors in a cyclic series is independent of the series and hence is an invariant of G.
3. Let G be a finite group. Then G is nilpotent if and only if $G^{\prime} \leq \Phi(G)$.
4. Let G be a supersolvable group. Prove that $F(G)$ is nilpotent and $G / F(G)$ is a finite abelian group.
5. Show that the additive group of rational number \mathbb{Q} is not free abelian.
6. Prove that a finite group G is nilpotent if and only if elements of co-prime order commute.
7. Let G be a group. Let H be a proper subgroup and A be a normal abelian subgroup of G, such that $G=H A$. Show that H is a maximal subgroup of G if and only if $A / H \cap A$ is a minimal normal subgroup of $G / H \cap A$.

Group Theory

(April, 30, 2012)

Answer to six questions only

1. Let G be a finite group of order $2 m$, where $m>1$ is odd. Then G has an normal subgroup of order m.
2. Let G be a group of order 385 . Then the Sylow 7 -subgroup of G is contained in the center of G and the Sylow 11-subgroup of G is normal.
3. Let H be an abelian normal subgroup of a finite group G such that $(|H|,|G: H|)=1$. Then H has a complement in G and all complements are conjugate.
4. Let G be a transitive permutation group on a set X and let $x \in X$. Then G is primitive if and only if G_{x} is a maximal subgroup of G.
5. Let $G=G_{1} \times \cdots \times G_{n}$, where G_{i} is non-abelian simple. Then G_{1}, \ldots, G_{n} are the only minimal normal subgroups of G; and every normal subgroup is a direct product of some G_{i}.
6. Let H be a group acting on a set X, and let G be any group. Describe the (restricted and unrestricted) wreath product of G by H.
7. Let G be a finite Frobenius group on X with kernel K and complement H. Prove, in details, that

$$
|X|=|K|=|G: H| \equiv 1 \quad(\bmod |H|)
$$

in particular $G=K H$.

$$
\begin{aligned}
& \text { Group Theory } \\
& \text { (July, 01, 2011) }
\end{aligned}
$$

1. Let G be a transitive permutation group on a set X and let $x \in X$. Then G is primitive if and only if G_{x} is a maximal subgroup of G.
2. (a) If G is a primitive permutation group on a set X, then either G has prime order or, for each pair of distinct elements x and y in $X, G=\left\langle G_{x}, G_{y}\right\rangle$.
(b) Let G be a primitive permutation group on a set X. If G_{z}, is an abelian group for some $z \in X$, then $G_{x} \cap G_{y}=1$, for all $x, y \in X$.
3. Suppose that $G=D r_{i=1}^{n} G_{i}$, where, for each $i=1, \ldots, n, G_{i}$ is a simple non-abelian normal subgroup of G. Then G_{1}, \ldots, G_{n} are the only minimal normal subgroups of G and every non-trivial normal subgroup of G is a direct product of some of G_{1}, \ldots, G_{n}.
4. Show that
(a) $\mathrm{Hol}\left(\mathrm{C}_{2} \times C_{2}\right) \cong S_{4}$.
(b) $C_{2} 乙 C_{2} \cong D_{8}$.
5. An abelian group G is divisible if and only if it is a direct sum of isomorphic copies of \mathbb{Q} and of quasicyclic groups.
6. Let G be a soluble group. A minimal normal subgroup of G is either an elementary abelian p-group or else a direct product of copies of the additive group of rational numbers.
7. Let G be a finite group. Then G is nilpotent if and only if every subgroup is subnormal.
8. If the center of a group G is torsion-free, each upper central factor is torsion-free.

> Group Theory (January, 07, 2009)

1. Let G be a cyclic p-group of order $p^{e}>1$ and $A:=\operatorname{Aut}(G)$. Then $A=S \times T$, where S is a group of order $p^{e}-1$ and T is a cyclic group of order $p-1$.
2. Let K be an abelain normal subgroup of a finite group G such that $(|K|,|G: K|)=1$. Then K has a complement in G, and all complements of K are conjugate in G.
3. Let G be a Frobenius group, with Frobenius complement H. If $|H|$ is even, then the Frobenius kernel is a normal subgroup.
4. (I) Let H be a subgroup of a group G. Prove that $N_{G}(H) / C_{G}(H)$ is isomorphic to a subgroup of $\operatorname{Aut}(H)$.
(II) Let G be nilpotent and N a maximal Abelian normal subgroup of G. Prove that
(a) $C_{G}(N)=N$.
(b) If N is cyclic, then G^{\prime} is cyclic.
5. Let G be a finite group, $C:=C_{G}(F(G))$. Then

$$
O_{p}(C / C \cap F(G))=1
$$

for every prime p
6. Let G be a π-separable finite group and $O_{\pi^{\prime}}(G)=1$. Then

$$
C_{G}\left(O_{\pi}(G)\right) \leq O_{\pi}(G)
$$

1. Let $G=G_{1} \times \cdots \times G_{n}$ and N be a normal subgroup of G.
(a) If N is perfect, then $N=\left(N \cap G_{1}\right) \times \cdots \times\left(N \cap G_{n}\right)$.
(b) If G_{1}, \ldots, G_{n} are non-abelina simple groups, then there exists a subset $J:=\left\{j_{1}, \ldots, j_{m}\right\} \subseteq\{1, \ldots, n\}$ such that

$$
N=G_{j_{1}} \times \cdots \times G_{j_{m}} \quad \text { and } \quad G_{k} \cap N=1 \quad \text { for } \quad k \notin J .
$$

2. Let \mathcal{M} be a finite set of minimal normal subgroup of G, and let $M=\prod_{N \in \mathcal{M}} N$. Let U be a normal subgroup of G . Then there exist $N_{1}, \ldots, N_{k} \in \mathcal{M}$ such that

$$
U M=U \times N_{1} \times \cdots \times N_{k} .
$$

3. Let G be a finite abelian group and U a cyclic subgroup of maximal order n G. Then there exists a complement V of U in G.
4. The automorphism of a group order p, a prime, is cyclic.
5. Let P be a p-subgroup of G and p be a divisor of $|G: P|$. Then $P<N_{G}(P)$.
6. Let G be not 3-closed and $|G|=12$. Then G is 2-closed.
7. Let H act on K, say with action φ, and let $J=\operatorname{Im} \varphi \leq$ Aut K. If the action is faithful then the group $H \ltimes_{\varphi} K$ is isomorphic to the relative holomorph $J K$ of K.
8. Let G be a finite group such that all Sylow subgroup of G are cyclic. Then G is Soluble. Moreover, G / G^{\prime} and G^{\prime} are both cyclic, G splits over G^{\prime}, and G^{\prime} is a Hall subgroup of G.
9. Let G be a finite group and P a Sylow p-subgroup of G. Then G is p nilpotent if and only if $N_{G}(Q) / C_{G}(Q)$ is a p-subgroup for every subgroup Q of P.
10. Let G be a finite group. Then G is p-nilpotent if and only if every chief factor of G of order divisible by p is central. Conclude that G is nilpotent if and inly if G is p-nilpotent for every prime p.
11. State and prove the Burnside's basis theorem.
12. Suppose that A is an abelian minimal normal subgroup of a finite group G. Then either $A \leq \Phi(G)$ or G splits over A.
