Group Theory

(December, 02, 2013)

1. Let G be a group and X be a set. Show that there exists a homomorphism $G \longrightarrow \operatorname{Sym}(X)$ if and only if there exists a function

$$
\begin{aligned}
& X \times G \longrightarrow X \\
& (x, g) \mapsto x g
\end{aligned}
$$

such that $x 1=x$ and $x(g h)=(x g) h$, for all $x \in X$ and $g, h \in G$.
2. Show that if G is a finite group of order $p^{2} q^{2}$, where p and q are prime numbers, then G is not simple.
3. Let H be a normal subgroup of a finite group G, such that $(|H|,|G: H|)=1$. Prove that H has a complement in G.
4. Let G be a finite primitive permutation group on a set X and $1 \neq N \unlhd G$. Then N acts transitively on X. Moreover if N is regular on X, then N is a minimal normal subgroup of G.
5. Suppose that G is a Frobenius group on a set X with kernel K. Show that
(a) $K=\{g \in G \mid \operatorname{Fix}(g)=\emptyset\} \cup\{1\}$, where $\operatorname{Fix}(g)=\{x \in X \mid$ $x g=x\}$.
(b) For all $1 \neq u \in K, C_{G}(u) \subseteq K$; and for all $1 \neq g \in G_{x}$, $C_{G}(g) \subseteq G_{x}$.
(c) $Z(G)=1$
6. (Ph. D. students) A regular permutation group of finite degree is primitive if and only if it has prime order.
7. (Ph. D. students) Show that every non-abelian group of order 8 is isomorphic to D_{8} or Q_{8}.

