Linear Groups

(May, 01, 2013)

- 1. Prove that $\operatorname{Aut}\left(\frac{\operatorname{GF}(q^m)}{\operatorname{GF}(q)}\right)$ is a cyclic group of order m.
- 2. Show that the number of one-dimensional subspaces of $V_n(q)$ is equal to $\frac{q^n-1}{q-1}$, which is equal to the number of hyperplanes of $V_n(q)$.
- 3. Let T be a transvection with hyperplane H. Show that (I) there exists a linear functional μ on $V_n(F)$ such that $H = \ker \mu$. (II) there exists a non-zero vector $a \in H$ such that $T(v) = v - \mu(v)a$, for all $v \in V_n(F)$.
- 4. State and prove the Iwasawa's Theorem.
- 5. Prove that if $n \ge 3$, then $\operatorname{GL}_n(F)' = \operatorname{SL}_n(F)' = \operatorname{SL}_n(F)$.
- 6. Show that if (n, q 1) = 1, then

$$\operatorname{GL}_n(q) \cong \mathbb{Z}_{q-1} \times \operatorname{SL}_n(q).$$

Also show that if (n, q - 1) > 1, then this result may not be true.

In the name of God

Linear Groups

(May, 01, 2013)

- 1. Prove that $|SP_{2n}(q)| = q^{n^2} \prod_{i=1}^n (q^{2i} 1).$
- 2. Let $|SP_{2n}(F)|$ is the group of isometries of (V, f), where (V, f) is a non-degenerate symplectic space on a field F. Let G be the subgroup of $SP_{2n}(F)$ generated by all symplectic transvections. Show that G acts transitively on non-zero vectors of V. Also show that G acts transitively on hyperbolic pairs.
- 3. Let (V, f) be a non-degenerate orthogonal (or Hermitian with the field automorphism τ) space on a field F. In the orthogonal case suppose that $\operatorname{Char}(F) \neq 2$. Show that
 - (a) There exists a non-zero vector $v \in V$ such that $f(v, v) \neq 0$.
 - (b) V has an orthogonal basis.
 - (c) The determinant function is an epimorphism from $\operatorname{GU}(V, f)$ on to the multiplicative subgroup $\{a \in F^{\times} \mid aa^{\tau} = 1\}$ of F^{\times} .
- 4. Prove that $SU_2(q^2) \cong SL_2(q)$.
- 5. Let (V, f) be a non-degenerate orthogonal space on a field F, where Char(F) ≠ 2, of dimension 2. Show that
 (a) If V has a non-zero isotropic vector, then V is a hyperbolic plane.
 (b) If V has no non-zero isotropic vector, then V has a basis

(b) If V has no non-zero isotropic vector, then V has a basis $\{v_1, v_2\}$ such that $f(v_1, v_1) = 1$ and $f(v_2, v_2) = -k$, where $k \in F$ is non-square.

6. Show that if q is odd, then $SO_2^+(q) \cong \mathbb{Z}_{q+1}$.