Permutation Groups (February, 23, 20011)

- 1. Let G be a finite group acting on a finite set Ω . Then G has m orbits on Ω where $m|G| = \sum_{x \in G} |\operatorname{fix}(x)|$.
- 2. Let G be an arbitrary group with a normal subgroup N, and put K := G/N. Then there is an embedding $\phi : G \longrightarrow$ $N \ wrK$ such that ϕ maps N onto $\operatorname{Im} \phi \cap B$ where B is the base group of N wrK.
- 3. Suppose that H and K are nontrivial groups acting on the sets Γ and Δ , respectively. Then the wreath product W := K wr H is primitive in the product action on $\Omega := \operatorname{Fun}(\Gamma, \Delta)$ if and only if:
 - (i) K acts primitively but not regularly on Δ ; and
 - (ii) Γ is finite and H acts transitively on Γ .

In the name of God

Permutation Groups (January, 08, 2013)

Answer to 4 questions

- 1. Let F be a field and $d \ge d$. Show that $AGL_d(F)$ is a split extension of a regular normal subgroup by a subgroup isomorphic to $GL_d(F)$; and it is a 2-transitive subgroup of $Sym(F^d)$. Also show that if $d \ge 2$, then $ASL_d(F)$ acts 2-transitively on the set of points of $AG_d(F)$.
- 2. Let $n \ge 5$. If $G \le S_n$ and $G \ne A_n$ or S_n , then $|S_n : G| \ge n$.
- 3. Let G be a finite primitive permutation subgroup of $Sym(\Omega)$ of degree n and rank r > 2 with subdegrees $n_l = 1 \le n_2 \le \cdots \le n_r$. Assume that G is not regular. Then $n_{i+l} \le n_i(n_2 1)$ for all $i \ge 2$.
- 4. Let G be a primitive subgroup of $Sym(\Omega)$. If G contains a 3-cycle, then $G \ge Alt(\Omega)$.
- 5. Let G be a permutation group of degree n containing a regular subgroup R. Suppose that R is abelian and has a cyclic Sylow p- subgroup for some prime p with p < n. Then G is either imprimitive or 2-transitive.

In the name of God

Permutation Groups (December, 23, 2012)

- 1. Suppose that the group G acts transitively on the two sets Ω and Γ , and let H be a stabilizer of a point in the first action. Then the actions are equivalent if and only if H is the stabilizer of some point in the second action.
- 2. Using definition (only) to prove that a if G be a group acting transitively on a set n with at least two points, then G is primitive if and only if each point stabilizer G_{α} is a maximal subgroup of G.
- 3. Let G be an arbitrary group with a normal subgroup N, and put K := G/N. Then there is an embedding $\phi : G \longrightarrow N \ wrK$ such that ϕ maps N onto $\operatorname{Im} \phi \cap B$ where B is the base group of NwrK.